M 340 Assignment \#4 Solutions

In each of the following problems write out the governing differential equation, find the solution to the equation and make the required calculation.

1. If you invest $\$ 1000$ at an interest rate of 5% per year and make regular monthly deposits of $\$ 150$. What will be the value of your account after 30 years?

$$
\begin{aligned}
A^{\prime}(t) & =.05 A(t)+D \quad A(0)=1000 \quad D=150 \times 12=1800 \\
A(t) & =C e^{.05 t}-\frac{1800}{.05} \quad C=1000+\frac{1800}{.05}=37000 \\
A(t) & =37000 e^{.05 t}-36000 \\
A(30) & =37000 e^{1.5}-36000=\$ 129,820
\end{aligned}
$$

2. If you borrow $\$ 25000$ at an interest rate of 6% per year and make regular payments of $\$ 200$ each month, how long will it take to pay off the loan? If you double the monthly payments, does that cut the length in half?

$$
\begin{aligned}
A^{\prime}(t) & =.06 A(t)-P \quad A(0)=25000 \quad P=200 \times 12=2400 \\
A(t) & =C e^{.06 t}+\frac{2400}{.06} \\
C & =25000-\frac{2400}{.06}=25000-40000=-15000 \\
A(t) & =-15000 e^{.06 t}+40000 \\
A(T) & =40000-15000 e^{.06 T}=0 \\
e^{.06 T} & =\frac{40}{15}=2.67 \quad .06 T=\ln (2.67)=0.982 \\
T & =.982 / .06=16.36 y r s \\
\text { If } \quad P & =400 \times 12=4800 \text { then } C=25000-80000=-55000 \\
\text { so } \quad A(t) & =80000-55000 e^{.06 t} \\
e^{.06 T} & =\frac{80}{55}=1.45 \quad .06 T=\ln (1.45)=0.372 \\
T & =.372 / .06=6.2 \mathrm{yrs}
\end{aligned}
$$

3. Write out the differential equation that models the chemical reaction $A+B \leftrightarrows C$, letting a and b denote the initial ammounts of chemicals A and B, respectively. If $x(t)$ denotes the ammount of chemical C at time t , sketch the four solution curves that correspond to initial conditions: $x(0)=0,0<x(0)<a, a<x(0)<b, b<x(0)$.

$$
x^{\prime}(t)=\alpha(a-x)(b-x)
$$

4. An electric circuit contains a resistance, R, and a capacitance, C, and is driven by an alternating current $E_{0} \cos \Omega t$. What is the amplitude of the response, $i(t)$, expressed in terms of R, C, Ω and E_{0} ?

$$
\begin{aligned}
R i(t)+\frac{1}{C} Q(t) & =E_{0} \cos \Omega t, \\
R i^{\prime}(t)+\frac{1}{C} i(t) & =-\Omega E_{0} \sin \Omega t, \quad i(0)=0 \\
i(t) & =a e^{-\frac{1}{C R} t}-\frac{C \Omega E_{0} \sin t \Omega-C^{2} R \Omega^{2} E_{0} \cos t \Omega}{C^{2} R^{2} \Omega^{2}+1} \\
i(0) & =a+\frac{E_{0} C^{2} R \Omega^{2}}{C^{2} R^{2} \Omega^{2}+1}=0 \\
i(t) & =-\frac{E_{0} C^{2} R \Omega^{2}}{C^{2} R^{2} \Omega^{2}+1} e^{-t / R C}-E_{0} C \Omega \frac{\sin t \Omega-R C \Omega \cos t \Omega}{C^{2} R^{2} \Omega^{2}+1} \\
i(t) & =\frac{E_{0} C \Omega}{\sqrt{C^{2} R^{2} \Omega^{2}+1}} \frac{R \Omega C \cos t \Omega-\sin t \Omega}{\sqrt{C^{2} R^{2} \Omega^{2}+1}}-\frac{E_{0} C^{2} R \Omega^{2}}{C^{2} R^{2} \Omega^{2}+1} e^{-t / R C} \\
i(t) & =\frac{E_{0} C \Omega}{\sqrt{C^{2} R^{2} \Omega^{2}+1}}[\cos \theta \cos \Omega t-\sin \theta \sin t \Omega]-\frac{E_{0} C}{C^{2} R^{2} \Omega^{2}+1} e^{-t / R C} \\
\cos \theta & =\frac{R \Omega C}{\sqrt{C^{2} R^{2} \Omega^{2}+1}} \\
\text { Amplitude } & =\frac{E_{0} C \Omega}{\sqrt{C^{2} R^{2} \Omega^{2}+1}}
\end{aligned}
$$

5.An electric circuit contains a resistance, R, and an inductance, L, and is driven by an alternating current $E_{0} \cos \Omega t$. What is the amplitude of the response, $i(t)$, expressed in terms of R, L, Ω and E_{0} ?

$$
\begin{aligned}
L \frac{d i}{d t}+R i & =E_{0} \cos \Omega t \quad i(0)=0 \\
i(t) & =\frac{R E_{0} \cos t \Omega+L \Omega E_{0} \sin t \Omega}{L^{2} \Omega^{2}+R^{2}}+C e^{-\frac{1}{L} R t} \\
i(0) & =\frac{R E_{0}}{L^{2} \Omega^{2}+R^{2}}+C=0 \\
i(t) & =E_{0} \frac{R \cos t \Omega+L \Omega \sin t \Omega}{\sqrt{L^{2} \Omega^{2}+R^{2}}}-\frac{R E_{0}}{L^{2} \Omega^{2}+R^{2}} e^{-\frac{1}{L} R t} \\
i(t) & =\frac{E_{0}}{\sqrt{L^{2} \Omega^{2}+R^{2}}}[\cos \theta \cos \Omega t-\sin \theta \sin \Omega t]-\frac{R E_{0}}{L^{2} \Omega^{2}+R^{2}} e^{-\frac{1}{L} R t} \\
\cos \theta & =\frac{R}{\sqrt{L^{2} \Omega^{2}+R^{2}}} \quad \sin \theta=\frac{-\Omega L}{\sqrt{L^{2} \Omega^{2}+R^{2}}} \\
\text { Amplitude } & =\frac{E_{0}}{\sqrt{L^{2} \Omega^{2}+R^{2}}}
\end{aligned}
$$

